Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Solution
`(2)/(3 + sqrt(7)`
= `(2)/(3 + sqrt(7)) xx (3 - sqrt(7))/(3 - sqrt(7)`
= `(2(3 - sqrt(7)))/((3)^2 - (sqrt(7))^2)`
= `(2(3 - sqrt(7)))/(9 - 7)`
= `(2(3 - sqrt(7)))/(2)`
= 3 - `sqrt(7)`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`