Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
उत्तर
`(2)/(3 + sqrt(7)`
= `(2)/(3 + sqrt(7)) xx (3 - sqrt(7))/(3 - sqrt(7)`
= `(2(3 - sqrt(7)))/((3)^2 - (sqrt(7))^2)`
= `(2(3 - sqrt(7)))/(9 - 7)`
= `(2(3 - sqrt(7)))/(2)`
= 3 - `sqrt(7)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`