Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
उत्तर
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
= `(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)) xx (sqrt(7) - sqrt(5))/(sqrt(7) - sqrt(5)`
= `(sqrt(7) - sqrt(5))^2/((sqrt(7))^2 - (sqrt(5))^2`
= `(7 + 5 - 2sqrt(35))/(7 - 5)`
= `(12 - 2sqrt(35))/(2)`
= 6 - `sqrt(35)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`