Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
उत्तर
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
= `(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)) xx (sqrt(7) - sqrt(5))/(sqrt(7) - sqrt(5)`
= `(sqrt(7) - sqrt(5))^2/((sqrt(7))^2 - (sqrt(5))^2`
= `(7 + 5 - 2sqrt(35))/(7 - 5)`
= `(12 - 2sqrt(35))/(2)`
= 6 - `sqrt(35)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`1/sqrt5`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3