Advertisements
Advertisements
प्रश्न
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
उत्तर
`x^3 + (1)/x^3`
`(x^3 + (1)/x^3) = (x + (1)/x)^3 -3(x + (1)/x)` -----(1)
we will first find the value of `x + (1)/x`
`x + (1)/x = (4 - sqrt(15)) + (1)/((4 - sqrt(15))`
= `((4 - sqrt(15))^2 + 1)/((4 - sqrt(15))`
= `(16 + 15 - 8sqrt(15) + 1)/((4 - sqrt(15))`
= `(8(4 - sqrt(15)))/((4 - sqrt(15))`
= 8
substituting the valuesin (1)
`(x^3 + (1)/x^3) = (x + (1)/x)^3 -3(x + (1)/x)`
= 83 - 24
= 488
`(x^3 + (1)/x^3)` = 488
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
Draw a line segment of length `sqrt8` cm.
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`