Advertisements
Advertisements
प्रश्न
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
उत्तर
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
= `[ sqrt2]/[ sqrt6 - 2] - [ sqrt3 ]/[ sqrt6 + sqrt2 ] `
`= [ sqrt2( sqrt6 + sqrt2) - sqrt3( sqrt6 - sqrt2 )]/[ (sqrt6 - sqrt2)- (sqrt 6 + sqrt2)]`
= `[ sqrt12 + 2 - sqrt18 + sqrt6 ]/[ (sqrt6)^2 - (sqrt2)^2 ]`
= `[ 2sqrt3 + 2 - 3sqrt2 + sqrt6 ]/(6 - 2)`
= `[ 2sqrt3 + 2 - 3sqrt2 + sqrt6 ]/4`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`