Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
उत्तर
`4/(7+ 4 sqrt3)`
`= 4/(7+ 4 sqrt3) xx (7- 4 sqrt3)/(7 - 4 sqrt3) `
`= (4(7- 4 sqrt3))/((7)^2 - (4 sqrt 3)^2)` ....`[(a + b)(a - b) = a^2 - b^2]`
`= (4(7- 4 sqrt3)) /(49 - 48)`
`= 28 - 16 sqrt 3`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
Draw a line segment of length `sqrt8` cm.
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`