Advertisements
Advertisements
प्रश्न
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
उत्तर
`x^3 + (1)/x^3`
`(x^3 + (1)/x^3) = (x + (1)/x)^3 - 3(x + (1)/x)` ----(1)
we will first find out `x + (1)/x`
`x + (1)/x = (7 + 4sqrt(3)) + (1)/((7 + 4sqrt(3))`
= `((7 + 4sqrt(3))^2 + 1)/((7 + 4sqrt(3))`
= `(49 + 48 + 56sqrt(3) + 1)/((7 + 4sqrt(3))`
= `(98 + 56sqrt(3))/((7 + 4sqrt(3))`
= `(14(7 + 4sqrt(3)))/((7 + 4sqrt(3))`
= 14
substitutingin (1)
`(x^3 + (1)/x^3) = (x + (1)/x)^3 -3(x + (1)/x)`
= (14)3 - 3 x 14
= 2744 - 42
= 2702
∴ `(x^3 + (1)/x^3)` = 2702
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
Show that Negative of an irrational number is irrational.