Advertisements
Advertisements
प्रश्न
Show that Negative of an irrational number is irrational.
उत्तर
Let us assume that x is an irrational number such that - x is rational.
So, - x = `"a"/"b"` where a, b are integer and b ≠ 0
x = `"- a"/"b"`
Since, - a, b is also integer and b ≠ 0.
So x is a rational number it contradict our assumption.
∴ - x is irrational.
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`