Advertisements
Advertisements
प्रश्न
If x = `sqrt3 - sqrt2`, find the value of:
(i) `x + 1/x`
(ii) `x^2 + 1/x^2`
(iii) `x^3 + 1/x^3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
उत्तर
x = `sqrt3 - sqrt2`
`1/x = 1/(sqrt3 - sqrt2) xx (sqrt3 + sqrt2)/(sqrt3 + sqrt2)`
`1/x = (sqrt3 + sqrt2)/((sqrt3)^2 - (sqrt2)^2)`
`1/x = (sqrt 3 + sqrt 2)`
(i) `x + 1/x`
`= (sqrt3 - sqrt2) + (sqrt3 + sqrt2)`
`= sqrt3 - cancel(sqrt2) + sqrt3 + cancel(sqrt2)`
`= sqrt3 + sqrt3`
= `2sqrt3`
(ii) `x^2 + 1/x^2`
`= (x + 1/x)^2 - 2 * x * 1/x` ...[a2 + b2 = (a + b)2 - 2ab]
`= (2sqrt3)^2 - 2`
`= 4 xx 3` - 2
= 10
(iii) `x^3 + 1/x^3`
`= (x + 1/x)^3 - 3 * x * 1/x (x + 1/x)` ...[a3 + b3 = (a + b)3 - 3 · a · b (a + b)]
`= (2sqrt3)^3 - 3 xx (2sqrt3)`
`= 8 xx 3sqrt3 - 6sqrt3`
`= 24sqrt3 - 6sqrt3`
`= 18sqrt3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
`= 18sqrt3 - 3(10) + 2sqrt3`
`= 20sqrt3 - 30`
`= 10(2sqrt3 - 3)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalise the denominators of : `3/sqrt5`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.