Advertisements
Advertisements
प्रश्न
If x = `sqrt3 - sqrt2`, find the value of:
(i) `x + 1/x`
(ii) `x^2 + 1/x^2`
(iii) `x^3 + 1/x^3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
उत्तर
x = `sqrt3 - sqrt2`
`1/x = 1/(sqrt3 - sqrt2) xx (sqrt3 + sqrt2)/(sqrt3 + sqrt2)`
`1/x = (sqrt3 + sqrt2)/((sqrt3)^2 - (sqrt2)^2)`
`1/x = (sqrt 3 + sqrt 2)`
(i) `x + 1/x`
`= (sqrt3 - sqrt2) + (sqrt3 + sqrt2)`
`= sqrt3 - cancel(sqrt2) + sqrt3 + cancel(sqrt2)`
`= sqrt3 + sqrt3`
= `2sqrt3`
(ii) `x^2 + 1/x^2`
`= (x + 1/x)^2 - 2 * x * 1/x` ...[a2 + b2 = (a + b)2 - 2ab]
`= (2sqrt3)^2 - 2`
`= 4 xx 3` - 2
= 10
(iii) `x^3 + 1/x^3`
`= (x + 1/x)^3 - 3 * x * 1/x (x + 1/x)` ...[a3 + b3 = (a + b)3 - 3 · a · b (a + b)]
`= (2sqrt3)^3 - 3 xx (2sqrt3)`
`= 8 xx 3sqrt3 - 6sqrt3`
`= 24sqrt3 - 6sqrt3`
`= 18sqrt3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
`= 18sqrt3 - 3(10) + 2sqrt3`
`= 20sqrt3 - 30`
`= 10(2sqrt3 - 3)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt5`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.