मराठी

Simplify the Following : √ 6 √ 2 + √ 3 + 3 √ 2 √ 6 + √ 3 − 4 √ 3 √ 6 + √ 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Simplify the following :

`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`

बेरीज

उत्तर

`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`

Rationalizing the denominator of each term, we have

= `(sqrt(6)(sqrt(2) - sqrt(3)))/((sqrt(2) + sqrt(3))(sqrt(2) - sqrt(3))) + (3sqrt(2)(sqrt(6) - sqrt(3)))/((sqrt(6) + sqrt(3))(sqrt(6) - sqrt(3))) - (4sqrt(3)(sqrt(6) - sqrt(2)))/((sqrt(6) + sqrt(2))(sqrt(6) - sqrt(2)))`

= `(sqrt(12) - sqrt(18))/(2 - 3) + (3sqrt(12) - 3sqrt(6))/(6 - 3) - (4sqrt(18) - 4sqrt(6))/(6 - 2)`

= `(sqrt(12) - sqrt(18))/(-1) + (3sqrt(12) - 3sqrt(6))/(3) - (4sqrt(18) - 4sqrt(6))/(4)`

= `sqrt(18) - sqrt(12) + sqrt(12) - sqrt(6) - sqrt(18) + sqrt(6)`

= 0

shaalaa.com
Simplifying an Expression by Rationalization of the Denominator
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Irrational Numbers - Exercise 1.3

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 1 Irrational Numbers
Exercise 1.3 | Q 4.1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×