Advertisements
Advertisements
प्रश्न
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
उत्तर
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
Rationalizing the denominator of each term, we have
= `(sqrt(6)(sqrt(2) - sqrt(3)))/((sqrt(2) + sqrt(3))(sqrt(2) - sqrt(3))) + (3sqrt(2)(sqrt(6) - sqrt(3)))/((sqrt(6) + sqrt(3))(sqrt(6) - sqrt(3))) - (4sqrt(3)(sqrt(6) - sqrt(2)))/((sqrt(6) + sqrt(2))(sqrt(6) - sqrt(2)))`
= `(sqrt(12) - sqrt(18))/(2 - 3) + (3sqrt(12) - 3sqrt(6))/(6 - 3) - (4sqrt(18) - 4sqrt(6))/(6 - 2)`
= `(sqrt(12) - sqrt(18))/(-1) + (3sqrt(12) - 3sqrt(6))/(3) - (4sqrt(18) - 4sqrt(6))/(4)`
= `sqrt(18) - sqrt(12) + sqrt(12) - sqrt(6) - sqrt(18) + sqrt(6)`
= 0
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`