Advertisements
Advertisements
Question
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
Solution
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
Rationalizing the denominator of each term, we have
= `(sqrt(6)(sqrt(2) - sqrt(3)))/((sqrt(2) + sqrt(3))(sqrt(2) - sqrt(3))) + (3sqrt(2)(sqrt(6) - sqrt(3)))/((sqrt(6) + sqrt(3))(sqrt(6) - sqrt(3))) - (4sqrt(3)(sqrt(6) - sqrt(2)))/((sqrt(6) + sqrt(2))(sqrt(6) - sqrt(2)))`
= `(sqrt(12) - sqrt(18))/(2 - 3) + (3sqrt(12) - 3sqrt(6))/(6 - 3) - (4sqrt(18) - 4sqrt(6))/(6 - 2)`
= `(sqrt(12) - sqrt(18))/(-1) + (3sqrt(12) - 3sqrt(6))/(3) - (4sqrt(18) - 4sqrt(6))/(4)`
= `sqrt(18) - sqrt(12) + sqrt(12) - sqrt(6) - sqrt(18) + sqrt(6)`
= 0
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`