Advertisements
Advertisements
प्रश्न
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
उत्तर
x3 + y3
(x3 + y3) = (x + y)3 - 3xy (x + y) ----(1)
Now, x + y = `(1)/((3 - 2sqrt(2))) + (1)/((3 + 2sqrt(2))`
= `((3 + 2sqrt(2)) + (3 - 2sqrt(2)))/((3 - 2sqrt(2))(3 + 2sqrt(2))`
= `(6)/(9 - 8)`
= 6
and xy = `(1)/((3 - 2sqrt(2))) xx (1)/((3 + 2sqrt(2))`
= `(1)/(9 - 8)`
= 1
substituting the valuesin (1), we get
(x3 + y3)
= (x + y)3 - 3xy (x + y)
= 216 - 3 x 6
= 198
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
Show that Negative of an irrational number is irrational.
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`