Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`2/(3 sqrt 7)`
उत्तर
`2/(3 sqrt 7)`
`= 2/(3 sqrt 7) xx sqrt 7/sqrt7` ...[multiply numerator and denominator by `sqrt7`]
`= (2sqrt7)/(3 xx 7)`
`= (2sqrt 7)/21`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2