Advertisements
Advertisements
प्रश्न
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
उत्तर
x2 + y2
x2 + y2 = (x + y)2 - 2xy ----(1)
∴ (x + y) = `((sqrt(3) + 1))/((sqrt(3) - 1)) + ((sqrt(3) - 1))/((sqrt(3) - 1)`
= `((sqrt(3) + 1)^2 + (sqrt(3) - 1)^2)/(3 - 1)`
= `(3 + 1 + 2sqrt(3) + 3 + 1 - 2sqrt(3))/(2)`
= `(8)/(2)`
= 4
and xy = `((sqrt(3) + 1))/((sqrt(3) - 1)) xx ((sqrt(3) - 1))/((sqrt(3) + 1)`
= 1
substituting in (1), we get
x2 + y2
= (x + y)2 - 2xy
= 16 - 2
= 14
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
Draw a line segment of length `sqrt5` cm.