Advertisements
Advertisements
प्रश्न
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
उत्तर
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
Rationalizing the denominator of each term, we have
= `(4sqrt(3)(2 + sqrt(2)))/((2 - sqrt(2))(2 + sqrt(2))) - (30(4sqrt(3) + 3sqrt(2)))/((4sqrt(3) - 3sqrt(2))(4sqrt(3) + 3sqrt(2))) - (3sqrt(2)(3 - 2sqrt(3)))/((3 + 2sqrt(3))(3 - 2sqrt(3))`
= `(8sqrt(3) + 4sqrt(6))/(4 - 2) - (120sqrt(3) + 90sqrt(2))/(48 - 18) - (9sqrt(2) - 6sqrt(6))/(9 - 12)`
= `(8sqrt(3) + 4sqrt(6))/(2) - (120sqrt(3) + 90sqrt(2))/(30) - (9sqrt(2) - 6sqrt(6))/(-3)`
= `(8sqrt(3) + 4sqrt(6))/(2) - (120sqrt(3) + 90sqrt(2))/(30) - (9sqrt(2) - 6sqrt(6))/(3)`
= `4sqrt(3) + 2sqrt(6) - 4sqrt(3) - 3sqrt(2) + 3sqrt(2) - 2sqrt(6)`
= 0
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
Draw a line segment of length `sqrt5` cm.