Advertisements
Advertisements
प्रश्न
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
उत्तर
`(sqrt(3) - 2)/(sqrt(3) + 2)`
= `(sqrt(3) - 2)/(sqrt(3) + 2) xx (sqrt(3) - 2)/(sqrt(3 - 2)`
= `(sqrt(3)(sqrt(3) - 2) - 2(sqrt(3) - 2))/((sqrt(3))^2 - (sqrt(2))^2`
= `(3 - 2sqrt(3) - 2sqrt(3) + 4)/(3 - 4)`
= `(7 - 4sqrt(3))/(-1)`
= `-(7 - 4sqrt(3))`
= `-7 + 4sqrt(3)`
= `4sqrt(3) - 7`
= `4sqrt(3) + (-7)`
= `"a"sqrt(3) + "b"`
Hence, a = 4 and b = -7.
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`