Advertisements
Advertisements
प्रश्न
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
उत्तर
`[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ] xx [ sqrt3 - sqrt2 ]/[ sqrt3 - sqrt2 ]`
= ` (sqrt3 - sqrt2 )^2/[(sqrt3)^2 - (sqrt2)^2]`
= `[ 3 + 2 - 2sqrt6 ]/[ 3 - 2 ]`
= 5 - 2√6
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`