Advertisements
Advertisements
Question
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Solution
`[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ] xx [ sqrt3 - sqrt2 ]/[ sqrt3 - sqrt2 ]`
= ` (sqrt3 - sqrt2 )^2/[(sqrt3)^2 - (sqrt2)^2]`
= `[ 3 + 2 - 2sqrt6 ]/[ 3 - 2 ]`
= 5 - 2√6
APPEARS IN
RELATED QUESTIONS
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
Draw a line segment of length `sqrt8` cm.