Advertisements
Advertisements
Question
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Solution
= `[ √3 + 1 ]/[ √3 - 1 ] xx [ √3 + 1 ]/[ √3 + 1 ]`
= `[( √3 + 1 )^2]/[( √3 )^2 - (1)^2 ]`
= `[ 3 + 1 + 2√3 ]/[ 3 - 1]`
= `[ 4 + 2√3 ]/[2]`
= `[ 2( 2 + √3 )]/[ 2 ]`
= 2 + √3
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`