Advertisements
Advertisements
Question
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
Solution
x = `4 - sqrt(15)`
∴ `(1)/x = (1)/(4 - sqrt(15))`
= `(1)/(4 - sqrt(15)) xx (4 + sqrt(15))/(4 + sqrt(15))`
= `(4 + sqrt(15))/(4^2 - (sqrt(15))^2`
= `(4 + sqrt(15))/(16 - 15)`
= `(4 + sqrt(15))/(1)`
= `4 + sqrt(15)`
∴ `x + (1)/x = (4 - sqrt(15)) + (4 + sqrt(15))`
= `4 - sqrt(15) + 4 + sqrt(15)`
= 8
Hence, `(x + (1)/x)^2`
= (8)2
= 64
APPEARS IN
RELATED QUESTIONS
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
If x = `sqrt3 - sqrt2`, find the value of:
(i) `x + 1/x`
(ii) `x^2 + 1/x^2`
(iii) `x^3 + 1/x^3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`