Advertisements
Advertisements
Question
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
Solution
`x^2 + (1)/x^2`
`(x^2 + (1)/x^2) = (x + (1)/x)^2 - 2` ----(1)
We first find out `x + (1)/x`
`x + (1)/x = (7 + 4sqrt(3)) + (1)/((7 + 4sqrt(3))`
= `((7 + 4sqrt(3))^2 + 1)/((7 + 4sqrt(3))`
= `(49 + 48 + 56sqrt(3) + 1)/((7 + 4sqrt(3))`
= `(98 + 56sqrt(3))/((7 + 4sqrt(3))`
= `(14(7 + 4sqrt(3)))/((7 + 4sqrt(3))`
= 14
substitutingin (1)
`(x^2 + (1)/x)^2 = (x + (1)/x)^2 -2`
= 196 - 2
= 194
∴ `(x^2 + (1)/x^2)` = 194
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/sqrt5`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`