English

If X = ( 7 + 4 √ 3 ) , Find the Value of X 2 + 1 X 2 - Mathematics

Advertisements
Advertisements

Question

If x = `(7 + 4sqrt(3))`, find the value of

`x^2 + (1)/x^2`

Sum

Solution

`x^2 + (1)/x^2`

`(x^2 + (1)/x^2) = (x + (1)/x)^2 - 2`    ----(1)

We first find out `x + (1)/x`

`x + (1)/x = (7 + 4sqrt(3)) + (1)/((7 + 4sqrt(3))`

= `((7 + 4sqrt(3))^2 + 1)/((7 + 4sqrt(3))`

= `(49 + 48 + 56sqrt(3) + 1)/((7 + 4sqrt(3))`

= `(98 + 56sqrt(3))/((7 + 4sqrt(3))`

= `(14(7 + 4sqrt(3)))/((7 + 4sqrt(3))`

= 14

substitutingin (1)
`(x^2 + (1)/x)^2 = (x + (1)/x)^2 -2`

= 196 - 2
= 194

∴ `(x^2 + (1)/x^2)` = 194

shaalaa.com
Simplifying an Expression by Rationalization of the Denominator
  Is there an error in this question or solution?
Chapter 1: Irrational Numbers - Exercise 1.3

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 1 Irrational Numbers
Exercise 1.3 | Q 7.2
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×