Advertisements
Advertisements
Question
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`
Solution
`(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3)`
`= (4 - sqrt5)/(4 + sqrt5) xx (4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) xx (5 - sqrt3)/(5 - sqrt3) + (4 + sqrt5)/(4 - sqrt5) xx (4 + sqrt5)/(4 + sqrt5) + 2/(5 - sqrt3) xx (5 + sqrt3)/(5 + sqrt3)`
`= (4 - sqrt5)^2/((4)^2 - (sqrt5)^2) + (2(5 - sqrt3))/((5)^2 - (sqrt3)^2) + (4 + sqrt5)^2/((4)^2 - (sqrt5)) + (2(5 + sqrt3))/((5)^2 - (sqrt3)^2)`
`= (16 + 5 - 8sqrt5)/(16 - 5) + (10 - 2sqrt3)/(25 - 3) + (16 + 5 + 8sqrt5)/(16 - 5) + (2(5 + sqrt3))/(25 - 3)`
`= (21 - 8sqrt5)/11 + (10 - 2sqrt3)/22 + (21 + 8sqrt5)/11 + (cancel(2)^1 (5 + sqrt3))/cancel(22)_11`
`= (21 - 8sqrt5)/11 + (cancel(2)^1(5 - sqrt3))/cancel(22)_11 + (21 + 8sqrt5)/11 + (5 + sqrt3)/11`
`= (21 - cancel(8sqrt5) + 5 - cancel(sqrt3) + 21 + cancel(8sqrt5) + 5 + cancel(sqrt3))/11`
`= (21 + 5 + 21 + 5)/11`
`= 52/11`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
Show that Negative of an irrational number is irrational.
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`