Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Solution
`(42)/(2sqrt(3) + 3sqrt(2)`
= `(42)/(2sqrt(3) + 3sqrt(2)) xx (2sqrt(3) - 3sqrt(2))/(2sqrt(3) - 3sqrt(2)`
= `(42(2sqrt(3) - 3sqrt(2)))/((2sqrt(3))^2 - (3sqrt(2)^2)`
= `(84sqrt(3) - 126sqrt(2))/(12 - 18)`
= `(84sqrt(3) - 126sqrt(2))/(-6)`
= `-14sqrt(3) + 21sqrt(2)`
= `21sqrt(2) - 14sqrt(3)`
= `7(3sqrt(2) - 2sqrt(3))`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`2/(3 sqrt 7)`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`