Advertisements
Advertisements
Question
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Solution
x2 - y2 + xy
x2 - y2 + xy = (x + y) (x - y) + xy ----(1)
∴ (x + y) = `((sqrt(3) + 1))/((sqrt(3) - 1)) + ((sqrt(3) - 1))/((sqrt(3) + 1)`
= `((sqrt(3) + 1)^2 + (sqrt(3) - 1)^2)/(3 - 1)`
= `(3 + 1 + 2sqrt(3) + 3 + 1 - 2sqrt(3))/(2)`
= `(8)/(2)`
= 4
(x - y) = `((sqrt(3) + 1))/((sqrt(3) - 1)) xx ((sqrt(3) - 1))/((sqrt(3) + 1)`
= `((sqrt(3) + 1)^2 - (sqrt(3) - 1)^2)/(3 - 1)`
= `(3 + 1 + 2sqrt(3) - 3 - 1 + 2sqrt(3))/(2)`
= `2sqrt(3)`
and xy = `((sqrt(3) + 1))/((sqrt(3) - 1)) xx ((sqrt(3) - 1))/((sqrt(3) + 1)`
= `(3 - 1)/(3 - 1)`
= 1
substitutingin (1), we get
x2 - y2 + xy
= (x+ y) (x - y) + xy
= `4 xx 2sqrt(3) + 1`
= `8sqrt(3) + 1`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`