Advertisements
Advertisements
Question
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
Solution
`(1)/x`
`(1)/x = (1)/((4 - sqrt(15))`
= `(1)/((4 - sqrt(15))) xx ((4 + sqrt(15)))/((4 + sqrt(15))`
= `((4 + sqrt(15)))/(16 - 15)`
= `(4 + sqrt(15))`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`