Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Solution
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
= `(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)) xx (2sqrt(3) - sqrt(6))/(2sqrt(3) - sqrt(6)`
= `((2sqrt(3) - sqrt(6))^2)/((2sqrt(3))^2 - (sqrt(6))^2`
= `(12 + 6 - 4sqrt(18))/(12 - 6)`
= `(18 - 4sqrt(18))/(6)`
= `(9 - 2sqrt(18))/(3)`
= `(9 - 6sqrt(2))/(3)`
= 3 - 2`sqrt(2)`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`