Advertisements
Advertisements
Question
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
Solution
`(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)`
= `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) xx (sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) - sqrt(0.75))`
= `(sqrt(2.5) - sqrt(0.75))^2/((sqrt(2.5))^2 - (sqrt(0.75))^2`
= `(2.5 - 2 xx sqrt(2.5) xx sqrt(0.75) + 0.75)/(2.5 - 0.75)`
= `(3.25 - 2 xx sqrt(0.25 xx 10) xx sqrt(0.25 xx 3))/(1.75)`
= `(3.25 - 2 xx 0.25sqrt(30))/(1.75)`
= `(3.25 - 0.5sqrt(30))/(1.75)`
= `(3.25)/(1.75) - (0.5)/(1.75)sqrt(30)`
= `(325)/(175) - (50)/(175)sqrt(30)`
= `(13)/(7) - (2)/(7)sqrt(30)`
= `(13)/(7) + (-2/7)sqrt(30)`
= p + q`sqrt(30)`
Hence, p = `(13)/(7)` and q = `-(2)/(7)`.
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalize the denominator.
`1/sqrt5`
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
Draw a line segment of length `sqrt8` cm.