Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Solution
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
= `(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)) xx (5sqrt(3) - sqrt(15))/(5sqrt(3) - sqrt(15)`
= `((5sqrt(3) - sqrt(15))^2)/((5sqrt(3))^2 - (sqrt(15))^2`
= `(75 + 15 - 10sqrt(45))/(75 - 15)`
= `(90 - 10sqrt(45))/(60)`
= `(9 - 1sqrt(45))/(6)`
= `(9 - 3sqrt(5))/(6)`
= `(3 - sqrt(5))/(2)`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
Show that Negative of an irrational number is irrational.
Draw a line segment of length `sqrt3` cm.
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`