Advertisements
Advertisements
Question
Show that Negative of an irrational number is irrational.
Solution
Let us assume that x is an irrational number such that - x is rational.
So, - x = `"a"/"b"` where a, b are integer and b ≠ 0
x = `"- a"/"b"`
Since, - a, b is also integer and b ≠ 0.
So x is a rational number it contradict our assumption.
∴ - x is irrational.
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`