Advertisements
Advertisements
Question
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
Solution
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)`
= `(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) xx (4sqrt(3) - 3sqrt(2))/(4sqrt(3) - 3sqrt(2)`
= `(7sqrt(3)(4sqrt(3) - 3sqrt(2)) - 5sqrt(2)(4sqrt(3) - 3sqrt(2)))/((4sqrt(3))^2 - (3sqrt(2))^2`
= `(84 - 21sqrt(6) - 20sqrt(6) + 30)/(48 - 18)`
= `(110 - 41sqrt(6))/(30)`
= `(110)/(30) - (41sqrt(6))/(30)`
= `(11)/(3) - (41)/(30)sqrt(6)`
= `"a" - "b"sqrt(6)`
Hence, a = `(11)/(3)` and b = `(41)/(30)`.
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`