Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
उत्तर
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
= `(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)) xx (5sqrt(3) - sqrt(15))/(5sqrt(3) - sqrt(15)`
= `((5sqrt(3) - sqrt(15))^2)/((5sqrt(3))^2 - (sqrt(15))^2`
= `(75 + 15 - 10sqrt(45))/(75 - 15)`
= `(90 - 10sqrt(45))/(60)`
= `(9 - 1sqrt(45))/(6)`
= `(9 - 3sqrt(5))/(6)`
= `(3 - sqrt(5))/(2)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`