Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
उत्तर
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
`= (sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3) xx (sqrt 5 - sqrt 3)/(sqrt 5 - sqrt 3)`
`= (sqrt 5 - sqrt 3)^2/((sqrt 5)^2 - (sqrt 3)^2) ....[because (a + b)(a - b) = a^2 - b^2]`
`= ((sqrt 5)^2 - 2(sqrt 5)(sqrt 3) + (sqrt 3)^2)/(5-3) ...[because (a - b)^2 = a^2 - 2ab + b^2]`
`= (5 - 2sqrt15 + 3 )/2`
`= (8 - 2sqrt 15)/2`
`= (2 (4 - sqrt15))/2`
`= 4 -sqrt15`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3