Advertisements
Advertisements
प्रश्न
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
उत्तर
`(1)/(sqrt(5) - sqrt(3)`
= `(1)/(sqrt(5) - sqrt(3)) xx (sqrt(5) + sqrt(3))/(sqrt(5) + sqrt(3)`
= `(sqrt(5) + sqrt(3))/((sqrt(5))^2 - (sqrt(3))^2`
= `(sqrt(5) + sqrt(3))/(5 - 3)`
= `(sqrt(5) + sqrt(3))/(2)`
= `(1)/(2)sqrt(5) + (1)/(2)sqrt(3)`
= `(1)/(2)sqrt(5) - (-1/2)sqrt(3)`
= `"a"sqrt(5) - "b"sqrt(3)`
Hence, a = `(1)/(2)` and b = `-(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy