Advertisements
Advertisements
प्रश्न
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
उत्तर
`(5 + 2sqrt(3))/(7 + 4sqrt(3)`
= `(5 + 2sqrt(3))/(7 + 4sqrt(3)) xx (7 - 4sqrt(3))/(7 - 4sqrt(3)`
= `(5(7 - 4sqrt(3)) + 2sqrt(3)(7 - 4sqrt(3)))/((7)^2 - (4sqrt(3))^2`
= `(35 - 20sqrt(3) + 14sqrt(3) - 24)/(49 - 48)`
= `(11 - 6sqrt(3))/(1)`
= `11 + (-6)sqrt(3)`
= `"a" + "b"sqrt(3)`
Hence, a = 11 and b = -6
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`