Advertisements
Advertisements
प्रश्न
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
उत्तर
`(1)/(sqrt(5) - sqrt(3)`
= `(1)/(sqrt(5) - sqrt(3)) xx (sqrt(5) + sqrt(3))/(sqrt(5) + sqrt(3)`
= `(sqrt(5) + sqrt(3))/((sqrt(5))^2 - (sqrt(3))^2`
= `(sqrt(5) + sqrt(3))/(5 - 3)`
= `(sqrt(5) + sqrt(3))/(2)`
= `(1)/(2)sqrt(5) + (1)/(2)sqrt(3)`
= `(1)/(2)sqrt(5) - (-1/2)sqrt(3)`
= `"a"sqrt(5) - "b"sqrt(3)`
Hence, a = `(1)/(2)` and b = `-(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`