Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
उत्तर
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
= `(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)) xx (3sqrt(5) + sqrt(7))/(3sqrt(5) + sqrt(7)`
= `((3sqrt(5) + sqrt(7))^2)/((3sqrt(5))^2 - (sqrt(7))^2`
= `(45 + 7 + 6sqrt(35))/(45 - 7)`
= `(52 + 6sqrt(35))/(38)`
= `(26 + 3sqrt(35))/(19)`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
Draw a line segment of length `sqrt5` cm.