Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
उत्तर
`(5)/(sqrt(7) - sqrt(2))`
= `(5)/(sqrt(7) - sqrt(2)) xx (sqrt(7) + sqrt(2))/(sqrt(7) + sqrt(2)`
= `(5(sqrt(7) + sqrt(2)))/((sqrt(7))^2 + (sqrt(2))^2)`
= `(5(sqrt(7) + sqrt(2)))/(7 - 2)`
= `(5(sqrt(7) + sqrt(2)))/(5)`
= `sqrt(7) + sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.