Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Solution
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
= `(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)) xx (3sqrt(5) + sqrt(7))/(3sqrt(5) + sqrt(7)`
= `((3sqrt(5) + sqrt(7))^2)/((3sqrt(5))^2 - (sqrt(7))^2`
= `(45 + 7 + 6sqrt(35))/(45 - 7)`
= `(52 + 6sqrt(35))/(38)`
= `(26 + 3sqrt(35))/(19)`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
Using the following figure, show that BD = `sqrtx`.