Advertisements
Advertisements
प्रश्न
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
उत्तर
`(sqrt(3) - 2)/(sqrt(3) + 2)`
= `(sqrt(3) - 2)/(sqrt(3) + 2) xx (sqrt(3) - 2)/(sqrt(3 - 2)`
= `(sqrt(3)(sqrt(3) - 2) - 2(sqrt(3) - 2))/((sqrt(3))^2 - (sqrt(2))^2`
= `(3 - 2sqrt(3) - 2sqrt(3) + 4)/(3 - 4)`
= `(7 - 4sqrt(3))/(-1)`
= `-(7 - 4sqrt(3))`
= `-7 + 4sqrt(3)`
= `4sqrt(3) - 7`
= `4sqrt(3) + (-7)`
= `"a"sqrt(3) + "b"`
Hence, a = 4 and b = -7.
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
Draw a line segment of length `sqrt3` cm.