Advertisements
Advertisements
प्रश्न
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
उत्तर
`[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ] xx [ 2√5 + 3√2 ]/[ 2√5 + 3√2 ]`
= `[( 2sqrt5 + 3sqrt2)^2]/[ (2sqrt5)^2 - (3sqrt2)^2]`
= `[ 4 xx 5 + 9 xx 2 + 12sqrt10 ]/[ 20 -18 ]`
= `[ 20 + 18 + 12sqrt10 ]/2`
= `[ 38 + 12sqrt10 ]/2`
= `[2( 19 + 6sqrt10 )]/2`
= 19 + 6√10
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`