Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
उत्तर
`(4 + sqrt(8))/(4 - sqrt(8)`
= `(4 + sqrt(8))/(4 - sqrt(8)) xx (4 + sqrt(8))/(4 + sqrt(8)`
= `((4 + sqrt(8))^2)/((4)^2 - (sqrt(8))^2`
= `(16 + 8 + 8sqrt(8))/(16 - 18)`
= `(24 + 8sqrt(8))/(8)`
= 3 + `sqrt(8)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`