Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
उत्तर
`(sqrt(15) + 3)/(sqrt(15) - 3)`
= `(sqrt(15) + 3)/(sqrt(15) - 3) xx (sqrt(15) + 3)/(sqrt(15) + 3)`
= `(sqrt(15) + 3)^2/((sqrt(15))^2 - (3)^2`
= `(15 + 9 + 6sqrt(15))/(15 - 9)`
= `(24 + 6sqrt(15))/(6)`
= 4 + `sqrt(15)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Show that Negative of an irrational number is irrational.
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`