Advertisements
Advertisements
प्रश्न
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
उत्तर
`sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
= `sqrt( 9 xx 2 )/[5sqrt( 9 xx 2) + 3sqrt( 36 xx 2 ) - 2sqrt( 81 xx 2 )]`
= `(3sqrt2)/( 15sqrt2 + 18sqrt2 - 18sqrt2 )`
= `(3sqrt2)/( 15sqrt2 )`
= `1/5`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`