Advertisements
Advertisements
Question
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
Solution
x2 + y2
(x2 + y2) = (x + y)2 - 2xy ----(1)
Now, x + y = `(1)/((3 - 2sqrt(2))) + (1)/((3 + 2sqrt(2))`
= `((3 + 2sqrt(2)) + (3 - 2sqrt(2)))/((3 - 2sqrt(2))(3 + 2sqrt(2))`
= `(6)/(9 - 8)`
= 6
and xy = `(1)/((3 - 2sqrt(2))) xx (1)/((3 + 2sqrt(2))`
= `(1)/(9 - 8)`
= 1
substituting the valuesin (1), we get
(x2 + y2)
= (x + y)2 - 2xy
= 36 - 2
= 34
(x2 + y2)
= 34
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy