Advertisements
Advertisements
प्रश्न
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
उत्तर
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
= `((sqrt(7) - sqrt(3))^2 - (sqrt(7) + sqrt(3))^2)/((sqrt(7) + sqrt(3))(sqrt(7) - sqrt(3))`
= `(7 + 3 - 2sqrt(21) - 7 - 3 - 2sqrt(21))/((sqrt(7))^2 - (sqrt(3))^2`
= `(-4sqrt(21))/(7 - 3)`
= `-sqrt(21)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
Draw a line segment of length `sqrt8` cm.