Advertisements
Advertisements
Question
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
Solution
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
= `((sqrt(7) - sqrt(3))^2 - (sqrt(7) + sqrt(3))^2)/((sqrt(7) + sqrt(3))(sqrt(7) - sqrt(3))`
= `(7 + 3 - 2sqrt(21) - 7 - 3 - 2sqrt(21))/((sqrt(7))^2 - (sqrt(3))^2`
= `(-4sqrt(21))/(7 - 3)`
= `-sqrt(21)`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
Draw a line segment of length `sqrt8` cm.
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`