Advertisements
Advertisements
प्रश्न
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
उत्तर
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
= `((sqrt(5) - 2)^2 - (sqrt(5) + 2)^2)/((sqrt(5) + 2)(sqrt(5) - 2)`
= `(5 + 4 - 4sqrt(5) - 5 - 4 - 4sqrt(5))/((sqrt(5))^2 - (2)^2`
= `(-8sqrt(5))/(5 - 4)`
= `-8sqrt(5)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3