Advertisements
Advertisements
प्रश्न
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
उत्तर
Given - `sqrt5` = 2.2 and `sqrt10` = 3.2.
`5/(sqrt20 - sqrt10)`
`= 5/(sqrt20 - sqrt10) xx (sqrt20 + sqrt10)/(sqrt20 + sqrt10)`
`= (5 (sqrt(20) + sqrt10))/(20 - 10)`
`= (cancel(5)^1 (sqrt(20) + sqrt10))/(cancel(10)_2)`
`= (sqrt(20) + sqrt10)/2`
`= (sqrt(4 xx 5) + sqrt10)/2`
`= (2sqrt5 + sqrt10)/2`
`= (2(2.2) + 3.2)/2`
`= (4.4 + 3.2)/2`
`= 7.6/2`
= 3.8
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`